Coupled Fluid-Structure Interaction Analysis of Solid Rocket Motor with Flexible Inhibitors
نویسندگان
چکیده
Flexible inhibitors are generally used in solid rocket motors (SRMs) as a means to control the burning of propellant. Vortices generated by the flow of propellant around the flexible inhibitors have been identified as a driving source of instabilities that can lead to thrust oscillations in launch vehicles. Potential coupling between the SRM thrust oscillations and structural vibration modes is an important risk factor in launch vehicle design. As a means to predict and better understand these phenomena, a multidisciplinary simulation capability that couples the NASA production CFD code, Loci/CHEM, with CFDRC’s structural finite element code, CoBi, has been developed. This capability is crucial to the development of NASA’s new space launch system (SLS). This paper summarizes the efforts in applying the coupled software to demonstrate and investigate fluid-structure interaction (FSI) phenomena between pressure waves and flexible inhibitors inside reusable solid rocket motors (RSRMs). The features of the fluid and structural solvers are described in detail, and the coupling methodology and interfacial continuity requirements are then presented in a general Eulerian-Lagrangian framework. The simulations presented herein utilize production level CFD with hybrid RANS/LES turbulence modeling and grid resolution in excess of 80 million cells. The fluid domain in the SRM is discretized using a general mixed polyhedral unstructured mesh, while full 3D shell elements are utilized in the structural domain for the flexible inhibitors. Verifications against analytical solutions for a structural model under a steady uniform pressure condition and under dynamic modal analysis show excellent agreement in terms of displacement distribution and eigenmode frequencies. The preliminary coupled results indicate that due to acoustic coupling, the dynamics of one of the more flexible inhibitors shift from its first modal frequency to the first acoustic frequency of the solid rocket motor. This insight could have profound implications for SRM and flexible inhibitor designs for current and future launch vehicles including SLS.
منابع مشابه
Acoustic-Mean Flow Interaction in Solid Propellant Rocket Motors
There are several sources for pressure oscillations in solid propellant rocket motors. Oscillatory flow field is one of them. Free shear layers in motor flow field cause vortex shedding. End edges of propellant grains and baffle edge in two-segmented motors are samples of such zones. These vortices move from their forming points and strike the field walls. The kinetic energy of vortices change ...
متن کاملAcoustic-Mean Flow Interaction in Solid Propellant Rocket Motors
There are several sources for pressure oscillations in solid propellant rocket motors. Oscillatory flow field is one of them. Free shear layers in motor flow field cause vortex shedding. End edges of propellant grains and baffle edge in two-segmented motors are samples of such zones. These vortices move from their forming points and strike the field walls. The kinetic energy of vortices change ...
متن کاملCoupled BE-FE Scheme for Three-Dimensional Dynamic Interaction of a Transversely Isotropic Half-Space with a Flexible Structure
The response of structures bonded to the surface of a transversely isotropic half-space (TIHS) under the effect of time-harmonic forces is investigated using a coupled FE-BE scheme. To achieve this end, a Finite Element program has been developed for frequency domain analysis of 3D structures, as the first step. The half-space underlying the structure is taken into consideration using a Boundar...
متن کاملOne Dimensional Internal Ballistics Simulation of Solid Rocket Motor
An internal ballistics model has been developed for performance prediction of a solid propellant rocket motor. In this model a 1-D unsteady Euler equation with source terms is considered. The flow is assumed as a non-reacting mixture of perfect gases with space and time varying thermo physical properties. The governing equations in the combustion chamber are solved numerically by using the Steg...
متن کاملSimulations of Slumping Propellant and Flexing Inhibitors in Solid Rocket Motors
* Technical Program Manager † Research Programmer ‡ Visiting Scholar § Research Scientist ¶ Associate Professor of Aeronautical and Astronautical Engineering, University of Illinois at Urbana-Champaign # Postdoctoral Research Associate ** Senior Research Scientist Copyright 2002 by Center for Simulation of Advanced Rockets. Published by the American Institute of Aeronautics and Astronautics, ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2013